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a b s t r a c t

A new simple method is proposed to analyse the total bulk shortening in flattened parallel folds. Ap-
plication of the method requires determining first the amount of flattening using any of the available
techniques or by using a new method proposed in this paper. Then, some shape information must be
obtained from the fold, such as the interlimb angle or the aspect ratio, as well as the eccentricity of the
conic section that gives the best fit to the midline of the folded layer. The latter parameter can be ob-
tained using the program ‘‘Fold Profiler’’. Finally, the flattening and the shape data are used to obtain the
total bulk shortening of the folded layer. A computer code is provided that performs these calculations.
The method does not consider the initial layer shortening prior to buckling and therefore gives an es-
timate of the minimum bulk shortening associated with the fold. The strain data obtained with this
method are not point values from selected locations inside the folded structure, but an overall evaluation
of its bulk strain that can be advantageously used in the regional interpretation. The analysis is two-
dimensional and only considers deformation in the fold profile plane. The study is completed with an
example of the application of the method to natural folds.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of strain in rocks and its variation within orogenic
belts is an important task of structural geology. Unfortunately, good
strain markers are not common, especially in metamorphic zones,
and available methods to achieve these goals are often laborious.
Moreover, the accuracy of the results obtained is uncertain in some
cases. As a result of all these problems, the distribution of strain is
not well known at present in many orogens. Analysis of strain using
folds is an alternative to the traditional methods, since fold struc-
tures are common and their morphology and cleavage patterns can
be used advantageously to shed light on the strain distribution in
the folded layers. In particular, the analysis of the geometry of
flattened parallel folds (Ramsay, 1962, 1967; Mukhopadhyay, 1965)
affords valuable and simple tools for the estimation of the strain
associated with folding (Ramsay, 1967; Hudeleston, 1973; Lisle,
1992, 1997; Hudleston and Lan, 1993; Bastida et al., 2003, 2005;
Shah and Srivastava, 2006; Srivastava and Shah, 2006; among
others).

Flattened parallel folds are formed from parallel folds (class 1B)
by the superposition of an irrotational homogeneous strain in-
volving a shortening perpendicular to the axial surface. The
: þ34 98 510 3103.
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previous parallel folds develop as a result of buckling by kinemat-
ical mechanisms such as flexural flow or tangential longitudinal
strain. The folds resulting from this superimposition have class 1C
shapes (Ramsay, 1967, pp. 411–415). Determining the total bulk
shortening of these folds is possible by finding first the bulk
shortening associated with flattening and then the bulk shortening
associated with buckling.

Several methods have been developed to determine the bulk
strain associated with flattening. Ramsay (1962, 1967) and
Mukhopadhyay (1965) found a functional relation between the
orthogonal thickness of the folded layer, the ratio rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
l2=l1

p
of

the axial lengths of the flattening strain ellipse and the dip of the
layer. Another method to measure the amount of flattening and to
classify folds was developed by Lisle (1997), who used for this
purpose the polar plot of the coordinates of the inverse orthogonal
thickness (1/ta or 1=t0a) vs. the dip a. Srivastava and Shah (2006)
proposed a method to obtain the amount of flattening by des-
training the flattened parallel fold with the help of the commonly
available drafting software. Other procedures, based on the Well-
man method and the Mohr circle, were developed by Shah and
Srivastava (2006).

Although several methods exist for quantifying the amount of
flattening involved in flattened parallel folds, there are no analytical
or graphical methods to directly obtain the total bulk shortening
involved in this type of folds. Furthermore, ideally such methods
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should take into account the bulk shortening involved at the
buckling stage. The aim of this paper is to develop a new simple
method that can be used to obtain bulk strain estimates from
flattened parallel folds. The method can be applied to a fold even if
we only know its limb–hinge thickness ratio and its general shape,
and it gives an estimation of the minimum bulk shortening asso-
ciated with the fold. This approach can be helpful for fast strain
estimations of the overall strain in cases where other methods are
difficult to apply. On the other hand, strain data obtained with this
method are not point values from selected locations inside the
structure, but a general evaluation of the bulk strain of the fold that
can be advantageously used in the regional interpretation. The
analysis is two-dimensional and only considers deformation in the
fold profile plane. The study is completed with an example of ap-
plication of the method to natural folds.

2. Basis of the method

The proposed method allows the total bulk shortening associ-
ated with development of flattened parallel folds to be determined.
It involves assuming a two-stage evolution of the fold: (i) formation
of a parallel or near parallel fold by buckling mechanisms such as
parallel tangential longitudinal strain (Bobillo-Ares et al., 2006),
equiarea tangential longitudinal strain (Ramsay, 1967, pp. 397–403;
Bobillo-Ares et al., 2000, 2006), flexural flow, or a combination of
these, and (ii) superposition of an irrotational homogeneous strain
with maximum shortening perpendicular to the axial trace of the
buckling fold, producing a class 1C fold (Ramsay, 1967, pp. 411–415).
The analysis is focussed on symmetrical folds, but it can be ex-
tended in some cases to asymmetrical folds formed by superposi-
tion of a more general homogeneous strain on buckling folds.

The analysis requires considering three successive configura-
tions of the fold (Fig. 1): I, initial configuration; II, configuration
after buckling; and III, configuration after flattening. Each stage is
represented by the midline of the layer. It is assumed that the
length of this line l0 does not change during buckling (trans-
formation from I to II). The coordinates of a point p on the midline
in the configuration after buckling and those of its image p0 after
flattening are related by

x0 ¼
ffiffiffiffiffi
l2

q
x; y0 ¼

ffiffiffiffiffi
l1

q
y; (1)

where
ffiffiffiffiffi
l1

p
and

ffiffiffiffiffi
l2

p
are the principal stretches of the flattening.

Hence, functions g(x) and f(x0), which represent the midline in the
configurations II and III, respectively, are related according to
Fig. 1. Successive configurations of the folded layer midline. (I) Initial stage showing a gen
p (x, g(x)). The midline length is preserved at this stage. (III) Configuration after flattening
gðxÞ ¼ 1ffiffiffiffiffi
l1

p f
� ffiffiffiffiffi

l2

q
x
�
: (2)

The bulk shortenings involved in the evolution of the fold are as
follows (Fig. 1).

- Buckling bulk shortening:

3 ¼ l0 � 2x0

l0
: (3)

- Flattening bulk shortening:

30 ¼
2x0 � 2x00

2x0
: (4)

- Total bulk shortening:

3T ¼
l0 � 2x00

l0
: (5)

These shortenings are related by the following equation:

3T ¼ 3þ 30 � 330: (6)

Taking into account the first of the Eq. (1), the definitions (3), (4)
and (5) can be written in terms of x00, which can be measured in the
field, and of l0:

3 ¼ 1�
2x00ffiffiffiffiffi
l2

p
l0
; (7)

0
ffiffiffiffiffiq
3 ¼ 1� l2; (8)

2x0

3T ¼ 1� 0

l0
: (9)

In order to obtain l0 in terms of field data, the equation for the
length of a curve must be used. Then

l0 ¼ 2
Z x0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g0ðxÞ2

q
dx; (10)
eral point P. (II) Configuration after buckling, showing the transformed general point
showing the transformed point p (x0 , f(x0)). See text for further explanation.
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g0(x) being the derivative of g(x). Using Eq. (2) and simple variable
change ðx0 ¼

ffiffiffiffiffi
l2

p
xÞ, we can write l0 in terms of the midline f(x0) of

configuration III:

l0 ¼
2ffiffiffiffiffi
l2

p Z x00

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

l1
f 0ðx0Þ2

s
dx0; (11)

f0 (x0) being the derivative of f (x0).
A good fit to the midline of a natural fold can be obtained by

a part of an adequately selected conic section. The general equa-
tions of this family of curves, in terms of the eccentricity e and
a scale parameter a, are given by (Aller et al., 2004)

f ðx0Þ

8<
: a

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1� e2

��
x0
a

�2
q

1� e2 0 � es1:

x0

2a
e ¼ 1:

(12)

The parameter a can be obtained from the fold aspect ratio
h¼ y00/x00 (Fig. 1) by the equation (Aller et al., 2004):

a ¼ x00
1þ h2

�
1� e2

�
2h

: (13)

The derivative function of f (x0) is

f 0ðx0Þ ¼ x0=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1� e2

��x0

a

�2
s : (14)

Flattening maps ellipses to ellipses, parabolas to parabolas and
hyperbolas to hyperbolas, that is, the type of conic section that
represents the midline of the buckled layer does not change with
flattening. Nevertheless, with the increase of the flattening amount,
the aspect ratio increases and the eccentricity changes, except in the
parabola, and tends progressively towards unity; that is, with the
increase of flattening and aspect ratio, the shape of the fold profiles
converges towards the parabola.

By introducing Eq. (14) into Eq. (11) we can obtain expressions
for l0 for the different values of the eccentricity e. Using the notation

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��e2 � 1

��q x00
a
; m ¼ 1þ l2

l2
�
e2 � 1

�; K ¼ 2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��e2 � 1
�� ffiffiffiffiffi

l2
pq ;

b ¼

ffiffiffiffiffi
l2

l1

s
x00
a
; ð15Þ

we have

l0 ¼ K
Z V

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�mv2

1� v2

s
dv for 0 � e < 1 ðellipsesÞ; (16)
l0 ¼ K
Z V

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmv2

1þ v2

s
dv for e > 1 ðhyperbolasÞ: (17)

The two integrals can be written in terms of elliptic functions of
second kind (Abramowitz and Stegun, 1964). However, the value of
these integrals can be obtained directly using MATHEMATICA� or
other mathematical software packages.

For the parabola (e¼ 1), the integral (11) can be written in terms
of elementary functions.

l0 ¼
a
ffiffiffiffiffi
l1

p
l2

�
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
þ Arcsinh b

�
: (18)

Some parameters that can be easily measured in the field or
obtained from fold photographs and that can be used in the cal-
culations are
- Maximum limb dip: a0.
- Interlimb angle: f0 ¼ p� 2a0.
- Thickness ratio:

t ¼ t0a0 ðorthogonal thickness for the maximum limb dipÞ=
ðorthogonal thickness in the hingeðdip ¼ 0ÞÞ ¼ ðta0=t0Þ.

The ratio rf of the axes of the flattening ellipse in terms of t0a0 and
a0 (or f0) can be determined from the equation obtained by Ramsay
(1967, p. 412, Eqs. (7)–(33)) for flattened parallel folds:

rf ¼

ffiffiffiffiffi
l2

l1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � cos2a0
p

sin a0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � sin2f0

2

r

cos f0

2

: (19)

By introducing the area ratio ðJ ¼ ðarea in the
configuration IIIÞ=ðarea in the configuration IIÞ ¼

ffiffiffiffiffiffiffiffiffiffi
l1l2

p
Þ in Eq.

(19) we can obtain l1 and l2:

l1 ¼ J
sin a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t � cos2a0
p ; (20)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � cos2a0
p

l2 ¼ J
sin a0

: (21)

Values of the area change (J� 1) are difficult to obtain in rocks
and it can be considered close to unity for flattening in competent
rocks. This unit value is assumed in the text below.

The scale parameter a can be determined from the interlimb
angle f0 using the equation that gives the maximum slope of the
limb midline (tan a0). For that it is necessary to determine the value
of the derivative (14) in x0 ¼ x00:

tan a0 ¼ 1

tanf0

2

¼
x00=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
1� e2

��
x00=a

�2
q : (22)

From this equation the value of a is given by

a ¼ x00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2f0

2
þ
�
1� e2

�s
: (23)
3. Flattening and associated bulk shortening

The ratio rf can be obtained by classifying the folded layer by
Ramsay’s (1967, pp. 359–372) method and comparing the plot of
orthogonal thickness ðt0aÞ against dip with those corresponding to
flattened parallel folds (Ramsay, 1967, p. 413, Figs. 7–79). Other
different methods to obtain rf have been proposed by Lisle (1997),
Bobillo-Ares et al. (2004) and Srivastava and Shah (2006).

A simple evaluation of the rf value can also be obtained by cal-
culating parameters s1 and s2 for the fold analysed (Bastida et al.,
2005). These parameters are defined from a curve of t0a2 vs. sin2a

for a fold limb, using two points, A and B, on this curve (Fig. 2). A is
the point on the curve where the abscissa equals (sin2am)/2, and B
is the final point of the curve with abscissa sin2am (am is the
maximum dip of the folded layer). After drawing the line segments,
OA and AB, we define s1 and s2 as

s1 ¼ tan b1 ¼
2
�
1� t01

2
	

sin2am
(24)

�
0 2 0 2

	

s2 ¼ tan b2 ¼

2 t1 � t2

sin2am
(25)

On an s1–s2 diagram, perfect flattened folds plot along the line
s1¼ s2. It is easy to show in this case that s1¼ s2¼1� rf

2, which



Fig. 3. Diagram of s2 vs. s1 showing the fold classes corresponding to the different lines
(0< s1¼ s2<1), and the corresponding

ffiffiffiffiffiffiffiffiffiffiffiffi
l2=l1

p
values are indicated on it.

Fig. 2. Diagram of t0a2 against sin2a, and definition of angles b1 and b2, and t01 and t02
from a curve representative of a fold (after Bastida et al., 2005).
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facilitates determining rf from parameters s1 and s2. Some values of
rf have been plotted on the straight line s1¼ s2 in Fig. 3. Points
outside this line correspond to folds that diverge from the shape of
a perfect flattened parallel fold, and the distance to this line gives an
evaluation of the deviation. If the departure is not large, the
arithmetic mean value of s1 and s2 can be used as an approximation
to the rf value of the analysed limb. The use of s1 and s2 allows the
range of flattening undergone by a set of folds to be visualized in
a single s1–s2 diagram.

The thickness ratio t is an interesting parameter which is closely
related to the flattening of folds, since for a specific maximum dip
a0max, a single value of rf corresponds to each thickness ratio t. This rf

value is given by Eq. (19). However, this method only gives a rough
estimate, since it involves the assumption that the fold considered
is a flattened parallel fold. It is therefore necessary to check at least
that the analysed fold belongs to class 1C. This method is useful in
cases where the quality of the outcrops or the shape of the folded
layers (e.g., perfect chevron folds) hamper the use of a complete
Ramsay’s classification.

Assuming no area change during flattening, J¼ l1l2¼1 and
l2¼ rf, so that the bulk shortening 30 associated with the flattening
can be obtained by applying Eq. (8); then,

30 ¼ 1�
ffiffiffiffi
rf

p
: (26)

4. Bulk shortening due to buckling

Obtaining the bulk shortening 3 associated with the buckling
requires applying Eq. (7). This involves determining x00 and h from
photographs of the fold, l1 and l2 from rf (l1¼1/rf and l2¼ rf when
J¼ 1), and l0. Calculation of l0 requires
and fields. The solid diagonal line is the locus of the perfect flattened parallel folds
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- fitting the midline of the fold by a part of a conic section, de-
termining the eccentricity e and the scale factor a. The equiv-
alent methods described by Bastida et al. (1999), Aller et al.
(2004), Srivastava and Lisle (2004) and Lisle et al. (2006) can be
used to make this fit. The parameter a can also be determined
using Eqs. (13) or (23);

- determining the parameters V, m, K and b by Eq. (15);
- applying Eq. (16) for ellipses, Eq. (17) for hyperbolas and Eq.

(18) for parabolas. The calculation can be made using computer
software (for example, MATHEMATICA�); and

- the data obtained in the steps above must be introduced in Eq.
(7) to obtain 3.
5. Total bulk shortening

Once 3 and 30 have been obtained, the total bulk shortening 3T

can be calculated using Eq. (6). When a general, rotational or
irrotational, homogeneous strain is superposed on a buckle fold to
produce shortening in a direction perpendicular to the axial
surface, an asymmetric fold can be produced in which the bulk
shortening of the two limbs is different. In this case small modi-
fications must be made in the calculation to find separately the
bulk shortening of each limb; that is, 2x0 and 2x00 must be
substituted by the width of each limb, and l0 will have a different
value for each limb. When the fold asymmetry is low, the total bulk
shortening is approximately the arithmetic mean shortening of the
two limbs.

A MATHEMATICA� code to make the calculations and to automat-
ically find the total bulk shortening is presented in Appendix A.

6. Properties of flattened parallel folds

Using the equations derived above, folds with three types of
midline shape have been analysed in detail: chevron, parabolic and
elliptic folds. These can be considered representative of the main
shapes of folds. The results for the bulk shortening 3T can be
expressed as a function of the ratio rf and the interlimb angle f0 and
sets of curves of equal f0 (or equal h in the case of elliptic folds) for
the different fold shapes analysed are shown in Fig. 4a, c and e (blue
curves). These curves connect points corresponding to folds that
have undergone different amounts of buckling and flattening to
reach the same interlimb angle. For a specific curve, as the flat-
tening amount increases (rf decreases) the amplitude of the fold
formed by buckling decreases. As the interlimb angle decreases
a minimum in the curves appears that migrates towards higher
amounts of flattening (lower values of rf). The curves indicate that
folds with the same shape and interlimb angle (or amplitude) can
be formed with different amounts of bulk shortening. This is due to
the fact that, starting from the same initial layer length, folds with
the same shape and interlimb angle, but with different size, that is,
with different length of the layer midline, can be formed. The
minimum bulk shortening corresponds to the fold with the greater
midline length.

As an alternative graph, sets of curves of equal f0 (or equal h in
the case of elliptic folds) for the different fold shapes analysed are
shown in Fig. 4b, d and e (blue curves), using as x-axis the thickness
ratio t instead of the ratio rf. In the case of elliptic folds, these curves
coincide with those obtained with rf as x-axis. In addition to the
minimum that these curves also have, it is observed that

- for a given interlimb angle, there is a value of t beyond which
total bulk strain increases explosively. This t value increases as
the interlimb angle increases;

- for every interlimb angle, t has a limit value. The minimum
thickness ratio for a specific interlimb angle is obtained when
the flattening tends to infinity (rf / 0). In this case, the t value
obtained is that of a similar fold with that interlimb angle. This
value decreases with the decrease of the interlimb angle (in-
crease of the maximum dip of the limb).

- The curves mutually cross, so that each of them crosses every
other. This means that two folds with different interlimb angle
can have the same thickness ratio and bulk shortening. The
flattening amount involved for each of them is different, so that
the fold with higher interlimb angle must have undergone
more flattening than the fold with lower interlimb angle.

The red curves in Fig. 4a, c and e track the change in interlimb
angle with increasing flattening, for a given value of interlimb angle
after buckling. The pre-flattening condition is indicated by the in-
tercept of the red curves with the y-axis. The blue curves and red
curves thus have a common point on the y-axis that gives the value
of interlimb angle after buckling and before flattening starts. The
intersection points of the curves of progressive flattening (red
curves) with the curves of constant interlimb angle (blue curves)
track the variation of interlimb angle with the increase of flattening
(e.g., points A1, A2, A3 and A4 in Fig. 4a indicate where a fold with
a buckling interlimb angle of 50� is flattened to produce interlimb
angles of 40, 30, 20 and 10�).

When curves of progressive flattening are plotted in the graph of
3T against t (red and brown curves in Fig. 4b, d and e), it is observed,
as in the graphics of 3T against rf , that they are increasing curves
that have a common point on the y-axis with the blue curves of
equal interlimb angle. In this case the curves corresponding to
initial interlimb angle �120� cross the curves corresponding
to lower initial interlimb angle and they have been drawn in brown
to highlight this feature. The crossing points indicate that two folds
with the same t and 3T can be formed from buckling folds with
different interlimb angle. At a crossing point, the fold originated
from a buckling fold with lower interlimb angle has undergone
lower flattening amount (higher rf value) than that originating from
a fold with a higher interlimb angle. The interpretation of the
crossing points of the blue curves of equal f0 with the red and
brown curves of progressive flattening is difficult, since the fol-
lowing types of crossing points with different meaning can be
distinguished.

- Crossing points of a curve of progressive flattening with
initial interlimb angle <120� (red curves in Fig. 4b and d)
with the decreasing part of the curves of equal f0 (blue
curves in Fig. 4b and d) track the variation of interlimb angle
with the increase of flattening for the red curve (e.g., points
B1 and B2 in Fig. 3b indicate where a fold with buckling
interlimb angle of 30� achieves interlimb angles of 20� and
10� by flattening).

- Crossing points of a curve of progressive flattening with initial
interlimb angle �120� (brown curves in Fig. 4b and d) with
the subvertical part of the curves of equal f0 (blue curves in
Fig. 4b and d) track the variation of interlimb angle with the
increase of flattening for the brown curve (e.g., points C1 to
C12 in Fig. 4b indicate where a fold with buckling interlimb
angle of 160� reaches interlimb angles of 120� to 10� by
flattening).

- Crossing points of the subvertical part of a curve of equal f0

(blue curves in Fig. 4b and d) with a curve of progressive flat-
tening with initial interlimb angle <120� (red curves in Fig. 4b
and d) (e.g., point D in Fig. 4b), or crossing points of the de-
creasing part of a curve of equal f0 (blue curves in Fig. 4b and d)
with curves of progressive flattening with initial interlimb
angle �120� (brown curves in Fig. 4b and d) (e.g., point E in
Fig. 4b) correspond in each case to two folds with different
interlimb angle and the same values of t and 3T.



Fig. 4. Curves of total bulk shortening vs. flattening (a, c and e) and curves of total bulk shortening vs. thickness ratio (b, d and e) for three selected fold shapes. Chevron folds (a and b),
parabolic folds (c and d) and elliptic folds (e). Blue lines correspond to folds with the same interlimb angle (a to d) or with the same aspect ratio (e), whereas red lines show the fold
evolution during flattening for folds with the indicated initial buckling interlimb angle (a–d) or with the indicated initial aspect ratio (e). Brown lines show the fold evolution for folds
with initial interlimb angles �120� (a and d). See text for further explanation.
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Fig. 6. Plot of selected folds from the sample in Fig. 5 on the s1–s2 diagram. Note the
asymmetric distribution with some folds entering the 1C-3 field.
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If the analysed fold has a parabolic, semielliptical or chevron
shape, or one close to these, the blue curves of Fig. 4a, c and e enable
an approximate estimation of the total bulk shortening 3T from the
rf and f0 values of the analysed fold without calculations. Alterna-
tively, 3T can be also obtained from t and f0 values using the blue
curves in Fig. 4b, d and e.

7. Example of application

The potential of the method to quantify the total bulk short-
ening produced in flattened parallel folds is shown by the analysis
of a set of small folds developed in a multilayer of Precambrian
sandstone and shale from the Narcea antiform (Westasturian-
Leonese Zone, NW Spain) (Fig. 5). Forty folds developed in com-
petent layers of sandstone were selected for the analysis. Other
folds in the sample displaying complicated geometry due to ac-
commodation problems of material, which give rise to structures
such as bulbous hinges, small faults, non-plane axial surfaces, etc.
were not analysed.

The first stage of the method is to obtain the strain ratio rf due to
flattening. The method based on the evaluation of parameters s1

and s2 has been used in this stage for most of the folds. The pa-
rameters have been obtained from measurements of orthogonal
thickness and dip made on a scanned image of the sample and
applying then Eqs. (24) and (25). The results are shown in Fig. 6.
Most of the folds belong to class 1C, but some of the points lie too
far from the line s1¼ s2; the line corresponding to flattened parallel
folds. A few folds belong to class 3 for high dips (corresponding to
parameter s2), that is, they are folds composed of classes 1C and 3.
Only 23 class 1C folds whose plot on the diagram of s1 vs. s2 is lo-
cated at an orthogonal distance from the line s1¼ s2 of less than
0.25 have been considered as adequate for evaluating rf. In these
folds the arithmetic mean s of s1 and s2 for every limb has been
obtained to make s ¼ s1 ¼ s2. rf Value has been obtained for every
limb taking into account than rf¼ (1� s1)1/2¼ (1� s2)1/2. The total
flattening for a complete fold has been obtained by determining the
arithmetic mean of rf of the two limbs. The individual values of

ffiffiffiffiffi
l1

p
and

ffiffiffiffiffi
l2

p
can be obtained assuming no area change.

In order to quantify the bulk shortening due to buckling, we
must use Eqs. (11) and (3). For that it is necessary to find a part of
Fig. 5. Small folds in a multilayer of Precambrian sandstone and shale from the Narcea
antiform (Westasturian-Leonese Zone, NW Spain).
a conic section that fits the function f(x0) of the fold midline in the
interval defined by every limb. The fit has been made firstly using
the program ‘Fold Profiler’ described by Lisle et al. (2006) for the
profile of the folded surfaces. Then, the eccentricity and aspect ratio
of the midline has been approximately obtained for each limb by
determining the respective arithmetic mean values of these pa-
rameters for the bottom and top of the folded layer. The arithmetic
mean of the values of each of these parameters for the midline of
the two limbs gives approximately the eccentricity and aspect ratio
of the midline of the complete fold. The eccentricities range in
general between 0.9 and 1.1 (shapes close to parabolas) and the
aspect ratio is lower than 6. A simple parameter to define the
function f(x0), an alternative to the aspect ratio, is the interlimb
angle. This parameter has been measured directly form the scanned
image of the sample.

Once the shortening due to buckling and flattening has been
obtained, Eq. (6) can be used to determine the total bulk shorten-
ing. A MATHEMATICA� code that automatically calculates the total bulk
shortening from the

ffiffiffiffiffi
l1

p
due to flattening (or the thickness ratio),

the eccentricity and the interlimb angle (or the aspect ratio) are
shown in Appendix A. The ellipses of total bulk strain obtained for
folds of the analysed sample, assuming no area change, are shown
in Fig. 7. The values of total bulk shortening obtained for the folds
analysed have been plotted against the interlimb angle (Fig. 8). The
points are well fitted by a decreasing straight line, suggesting that
the interlimb angle gives in this case a first estimation of the total
bulk shortening. Nevertheless, this relation must depend also on
the lithology and the deformation conditions and must be checked
in other cases. The bulk shortening due to buckling and the bulk
shortening due to flattening have also been plotted against the
interlimb angle (Fig. 9) and the points also show a decreasing



Fig. 7. Total bulk strain ellipses obtained for some of the folds in the sample of Fig. 5.
The corresponding

ffiffiffiffiffiffiffiffiffiffiffiffi
l1=l2

p
values are indicated. No area change is assumed in the

analysis.
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tendency, though the dispersion of points is greater than in the case
of the total bulk shortening, mainly in the case of flattening.

Fig. 6 also shows a tendency of points to have s1< s2, that is, the
number of points with s1< s2 is notably greater than the number of
points with s1> s2. In addition, several points have s1<1< s2, in-
dicating that the corresponding fold limbs belong to class 3 for high
dips. The formation of these latter folds in competent layers is
difficult to explain. Nevertheless, several possible reasons can be
pointed out to explain these facts: initial irregularities in the shape
of the layers, simultaneous buckling and flattening, pressure solu-
tion and interaction between the folding layers. Now we consider
briefly these factors.

Slight initial irregularities in the shape of the layer do not pro-
duce drastic deviations of the representative points from the line
s1¼ s2 in the diagram of s1 vs. s2. Assuming that the thickness of the
Fig. 8. Diagram of total bulk shortening vs. interlimb angle for selected folds in the
sample of Fig. 5. Note the linear correlation of the values. The equation of the corre-
lation straight line and the squared correlation R2 value are indicated.
layer is maintained during the buckling, a gentle initial taper of the
layer would give rise to some differences between s1 and s2 after
flattening, but would not systematically produce s1< s2 and usually
the whole fold would be maintained inside the field of the class 1C
folds.

Simultaneous buckling and flattening is a possible mechanism
that was considered by Hudeleston (1973). Usually it is admitted
that flattening probably occurs when the growth of parallel folds by
buckling becomes difficult (Ramsay, 1967, pp. 411–412). However,
a transitional stage between buckling and flattening in which both
mechanisms operate simultaneously could exist in some cases. This
combination would give rise to folds with s1< s2 (see, for example,
Hudeleston, 1973, Fig. 23B), but not to folds with a part of class 3
(points with s1<1< s2).

Detailed observation of folds in the analysed sample suggests
that pressure solution can be an important mechanism in the de-
velopment of the folded layer geometry. In many cases, relatively
pale areas are observed in the dilation spaces corresponding to the
hinge zones of the incompetent layers and specially near to the
outer arc of the competent layers (Fig. 10). This feature suggests that
quartz, which is relatively soluble by pressure solution, has been
eliminated from the competent layers at the interface with the
incompetent layers in the parts of the limbs with high dips, where
the interface tends to be at a high angle to the main principal
compressive stress. The dissolved material has probably pre-
cipitated in the dilation spaces generated during folding in the
hinge zones within the incompetent layers. Where dips are high,
dissolution of the competent layer could involve thinning in the
limbs and lead to a switch to a class 3 fold geometry in some cases.
This mechanism seems possible in small folds where the distance
between inflection points and hinge zones is compatible with the
short paths of the diffusion processes. Nevertheless, there is not an
obvious relation between folds with evidence of pressure solution
and folds with s1< s2 or s1<1< s2.

Compressive forces due to interaction between adjacent com-
petent layers can produce local deformation in the limbs that can
thin the layers and give rise to situations with s1< s2 or even
s1<1< s2. These surface forces could be a cause of local pressure
solution. An example can be seen at the point P of Fig. 10, where
a competent layer penetrates slightly the adjacent competent layer,
giving rise to a thinning of its limb, which classifies as 1C-3
(s1<1< s2.).

8. Discussion and conclusions

An analytical method to quantify the total bulk shortening in
flattened parallel folds is developed in the present paper. The
method requires determining first the flattening amount by any of
the available methods (Ramsay, 1967; Hudeleston, 1973; Lisle, 1992,
1997; Shah and Srivastava, 2006; Srivastava and Shah, 2006), or
using a new simple method proposed in the present paper. The new
method is based on the use of two parameters, s1 and s2, that
permit a simplified implementation of the Ramsay’s classification
scheme. In a second step, the conic section that gives the best fit to
the folded layer midline is obtained using the program ‘Fold Pro-
filer’ (Lisle et al., 2006). Finally the flattening and the shape data are
used to compute the total bulk shortening of the folded layer. A
computer code allows automating the calculations (Appendix A).
Graphical determination of the bulk strain can be also made using
the charts of Fig. 4.

The method proposed to quantify the total bulk strain disre-
gards the homogeneous layer shortening that can occur at the
beginning of folding, so that it only provides a minimum bulk
shortening. In agreement with buckling theory (Biot, 1961; Ram-
berg, 1964), the amount of layer shortening decreases as the com-
petence contrast between layers increases, so that the error will be



Fig. 9. Diagrams of bulk shortening due to buckling vs. interlimb angle (a) and bulk shortening due to flattening vs. interlimb angle (b) for selected folds in the sample of Fig. 5.
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small with high competence contrasts. This method allows the
estimation of a single total strain ellipse for each fold, and the data
obtained will have a particular interest in studies of regional ge-
ology, in which an aim is to know the strain distribution in an
orogenic belt.

A set of 23 small class 1C folds from a sample of sandstone and
shale, collected in the Narcea antiform (Westasturian-Leonese
Zone, NW Spain), was analysed in order to determine the total bulk
shortening. The midlines of the folded layers have shapes close to
parabolas with an aspect ratio lower than 6. The results show
a near-linear negative relationship between the total bulk
Fig. 10. Details of the Fig. 5. A–G indicate pale areas with quartz enrichment in the
hinge zone of the incompetent layers that suggest a mechanism of pressure solution. P
points to an area of interaction between adjacent competent layers that resulted in
a thinning of the fold limbs.
shortening and the interlimb angle (Fig. 8), and suggest that the
interlimb angle can allow a first estimation of this shortening.
Testing of this relation for folds developed in other rocks and
geological conditions is an interesting topic that must be
researched in the future.

Some of the folds of the sample above belong to class 3 or are
close to it for high dips. These forms cannot be explained by ho-
mogeneous flattening of parallel folds. Folds of class 1C tending to
class 3 for high dips can be explained by simultaneous buckling and
flattening (Hudeleston, 1973). However, these folds, together with
the class 3 folds for high dips, can be also explained by a mechanism
of pressure solution that eliminates quartz from the sandstone/
shale interface in the areas with high dips. Presence of pale areas
enriched in quartz in the hinge zones of the incompetent layer is
indicative of quartz precipitation and support this hypothesis. In-
teraction forces between adjacent competent layers can enhance
the solution mechanism and produce an additional thinning of the
limbs.
Acknowledgements

The present work was supported by Spanish CGL2005-02233-
BTE project funded by Ministerio de Educación y Ciencia and Fondo
Europeo de Desarrollo Regional (FEDER) and the project Topo-
Iberia (CSD2006-0041) of the Spanish CONSOLIDER-INGENIO 2010
Program. We are grateful to A. Rubio Ordóñez and L.M. Rodrı́guez
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Appendix A. MATHEMATICA code to obtain the total bulk
shortening in flattened parallel folds

This appendix consists of two parts. The first contains the
MATHEMATICA code where the necessary functions are defined. The
second includes the most frequent applications of the previous
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definitions in order to determine the bulk shortening from different
inputs.

A.1. Mathematica definitions for bulk shortening analysis

The following definitions must not be modified by the user and
must be run prior to all the calculations:

obtainLambda2[c_,v_,phi_]:¼ Module[{},v Sqrt[c^2-

Cos[phi Degree]^2]/Abs[Sin[phi Degree]]];

obtainLambda1[c_,v_,phi_]:¼ Module[{},v Abs[Sin[phi

Degree]]/Sqrt[c^2-Cos[phi Degree]^2]];

obtainAfromInterlimbAngle[xp0_,e_,phi_]:¼
Module[{},xp0 Sqrt[Tan[Degree phi/2]^2þ 1� e^2]];

obtainAfromH[xp0_,e_,h_]:¼ Module
[{},xp0(1þ (1� e^2)h^2)/(2 h)];

obtainMaximumDip[xp0_,e_,a_]:¼ Module[{},ArcTan
[(xp0/a)/Sqrt[1� (1� e^2)(xp0/a)^2]] 180/Pi];

obtainM[l1_,l2_,e_]:¼ Module[{},1� l1/(l2(1�
e^2))];

obtainV[xp0_,e_,a_]:¼ Module[{},Sqrt[Abs
[1� e^2]]xp0/a];

hMaximum[e_]:¼ Module[{},1/Sqrt[Abs[1� e^2]]];
integrand1[m_,t_]:¼ Module[{},Sqrt[(1� m t^2)/

(1� t^2)]];

integrand2[m_,t_]:¼ Module[{},Sqrt[(1þ m t^2)/(1þ
t^2)]];

funcLongParabola[b_]:¼ Module[{},b Sqrt[1þ b^2]þ
ArcSinh[b]];

10[11_,12_,xp0_,e_,a_]:¼ Module[{limT,m,b,coef1,-
coef2},limT¼ Sqrt[Abs[1� e^2]]xp0/a;m¼ If
[e\[Equal]1,0,obtainM[11,12,e]];b¼ Sqrt[11/12]
xp0/a;coef1¼ If[e\[Equal]1,0,2a/(Sqrt[11]
Sqrt[Abs[1� e^2]])];coef2¼ a Sqrt[12]/11;
Which[

e< 1,coef1 NIntegrate[integrand1[m,t],

{t,0,limT}],

e> 1,coef1 NIntegrate[integrand2[m,t],

{t,0,limT}],

e\[Equal]1,coef2 funcLongParabola[b]]];

shorteningBuckleFold[11_,12_,xp0_,e_,a_]:

¼ 1� 2xp0/(Sqrt[11]l0[11,12,xp0,e,a]);

shorteningFlattenedFold[11_,12_,xp0_,e_,a_]:

¼ 1� Sqrt[11];

totalShortening[11_,12_,xp0_,e_,a_]:¼ 1� 2xp0/
l0[11,12,xp0,e,a];
A.2. Examples of application of the code for the determination of
the bulk shortening.

In this part the total bulk shortening is determined from dif-
ferent sets of data inputs. The cases are presented with particular
inputs that can be modified by the user. In the following text, the
names of the functions defined above are in bold and the variables
defined by the user are in italics.

Case 1: Obtaining the bulk shortening from the interlimb angle
phi and the thickness ratio c.
Data input: Area change, interlimb angle phi, final width of the
fold limb xp0 (usually considered unity), eccentricity of the conic
section e and thickness ratio c.

areaChange¼ 1;
phi¼ 37;
xp0¼ 1;
e¼ 1.04095;
c¼ 0.551162;

Obtaining the scale factor a of the conic section (input and output
data are displayed on the same line separated by an arrow):

a¼ obtainAfromInterlimbAngle[xp0,e,phi]/

0.168455

Obtaining the maximum dip:

maximumDip¼ obtainMaximumDip[xp0,e,a]/ 71.5

Obtaining the principal values of the strain:

lambda2¼ obtainLambda2[c,areaChange,
maximumDip]/ 0.475221

lambda1¼ obtainLambda1[c,areaChange,
maximumDip]/ 2.10428

Obtaining the shortening due to buckling:

shorteningBuckleFold[lambda2,lambda1,xp0,e,a]/

0.292994

Obtaining the shortening due to flattening:

shorteningFlattenedFold[lambda2,lambda1,

xp0,e,a]/ 0.310637

Obtaining the total bulk shortening:

totalShortening[lambda2,lambda1,xp0,e,a]/

0.512616

Case 2: Obtaining the bulk shortening from the aspect ratio h
and the thickness ratio c.

Data input: Area change, aspect ratio h, final width of the fold
limb xp0 (usually considered unity), eccentricity of the conic sec-
tion e and thickness ratio c.

areaChange¼ 1;
h¼ 2;
xp0¼ 1;
e¼ 0.999999;
c¼ 0.7;

Obtaining the maximum possible h for the eccentricity e (h value in the
inputs must be lower than h maximum for the problem to be solvable):

hMaximum[e]/ 707.107

Obtaining the scale factor a corresponding to the aspect ratio h:

a¼ obtainAfromH[xp0,e,h]/ 0.250002

Obtaining the maximum dip:

maximumDip¼ obtainMaximumDip[xp0,e,a]/ 75.9639

Obtaining the principal values of the strain:
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lambda2¼ obtainLambda2[c,areaChange,maximumDip]/

0.67685

lambda1¼ obtainLambda1[c,areaChange,
maximumDip]/ 1.47743

Obtaining the shortening due to buckling:

shorteningBuckleFold[lambda2,lambda1,xp0,e,a]/

0.432152

Obtaining the shortening due to flattening:

shorteningFlattenedFold[lambda2,lambda1,

xp0,e,a]/ 0.177291

Obtaining the total bulk shortening:

totalShortening[lambda2,lambda1,xp0,e,a]/

0.532827

Case 3: Obtaining the bulk shortening from the inte
rlimb angle phi and the principal values of strain lambda2 and
lambda1.

Data input: interlimb angle phi, final width of the fold limb xp0
(usually considered unity), eccentricity of the conic section e,
lambda1 and lambda2.

phi¼ 36;
xp0¼ 1;
e¼ 0.9;
lambda2¼ 0.03216996;
lambda1¼ 1/0.03216996;

Obtaining the maximum possible h for the eccentricity e (h value in
the inputs must be lower than h maximum for the problem to be
solvable):
hMaximum[e]/ 2.29416

Obtaining the scale factor a of the conic section from the interlimb
angle phi:

a¼ obtainAfromInterlimbAngle[xp0,e,phi]/

0.543666

Obtain the maximum dip:

maximumDip¼ obtainMaximumDip[xp0,e,a]/ 72

Obtaining the shortening due to buckling:

shorteningBuckleFold[lambda2,lambda1,xp0,e,a]/

0.0298474

Obtaining the shortening due to flattening:

shorteningFlattenedFold[lambda2,lambda1,

xp0,e,a]/ 0.576491

Obtaining the total bulk shortening:

totalShortening[lambda2,lambda1,xp0,e,a]/

0.589132

Case 4: Obtaining the bulk shortening from the aspect ratio h
and the principal values of strain lambda1 and lambda2.
Data input: interlimb angle phi, final width of the fold limb xp0
(usually considered unity), eccentricity of the conic section e,
lambda1 and lambda2.

h¼ 2;
xp0¼ 1;
e¼ 0.999999;
lambda2¼ 0.64;
lambda1¼ 1/lambda2;

Obtaining the maximum possible h for the eccentricity e (h value in
the inputs must be lower than h maximum for the problem to be
solvable):

hMaximum[e]/ 707.107

Obtaining the scale factor of the conic section a corresponding to
the aspect ratio h:

a¼ obtainAfromH[xp0,e,h]/ 0.250002

Obtaining the maximum dip:

maximumDip¼ obtainMaximumDip[xp0,e,a]/ 75.9639

Obtaining the shortening due to buckling:

shorteningBuckleFold[lambda2,lambda1,xp0,e,a]/

0.411842

Obtaining the shortening due to flattening:

shorteningFlattenedFold[lambda2,lambda1,xp0,

e,a]/ 0.2

Obtaining the total bulk shortening:

totalShortening[lambda2,lambda1,xp0,e,a]/

0.529474
References

Abramowitz, M., Stegun, I.A., 1964. Handbook of mathematical functions with
formulas, graphs and mathematical tables. In: National Bureau of Standards,
Applied Mathematics Series 55. National Bureau of Standards, Washington,
1046 pp.

Aller, J., Bastida, F., Toimil, N.C., Bobillo-Ares, N.C., 2004. The use of conic sections
for the geometrical analysis of folded surface profiles. Tectonophysics 379,
239–254.

Bastida, F., Aller, J., Bobillo-Ares, N.C., 1999. Geometrical analysis of folded surfaces
using simple functions. Journal of Structural Geology 21, 729–742.

Bastida, F., Bobillo-Ares, N.C., Aller, J., Toimil, N.C., 2003. Analysis of folding by
superposition of strain patterns. Journal of Structural Geology 25, 1121–
1139.

Bastida, F., Aller, J., Bobillo-Ares, N.C., Toimil, N.C., 2005. Fold geometry: a basis for
their kinematical analysis. Earth-Science Reviews 70, 129–164.

Biot, M.A., 1961. Theory of folding of stratified visco-elastic media and its implica-
tions in tectonics and orogenesis. Geological Society of America Bulletin 75,
563–568.

Bobillo-Ares, N.C., Bastida, F., Aller, J., 2000. On tangential longitudinal strain fold-
ing. Tectonophysics 319, 53–68.

Bobillo-Ares, N.C., Toimil, N.C., Aller, J., Bastida, F., 2004. FoldModeler’’: a tool for the
geometrical and kinematical analysis of folds. Computers and Geosciences 30,
147–159.

Bobillo-Ares, N.C., Aller, J., Bastida, F., Lisle, R.J., Toimil, N.C., 2006. The problem of
area change in tangential longitudinal strain folding. Journal of Structural
Geology 28, 1835–1848.

Hudeleston, P.J., 1973. Fold morphology and some geometrical implications of
theories of fold development. Tectonophysics 16, 1–46.

Hudleston, P.J., Lan, L., 1993. Information from fold shapes. Journal of Structural
Geology 15, 253–264.

Lisle, R.J., 1992. Strain estimation from flattened buckle folds. Journal of Structural
Geology 14, 369–371.



J. Aller et al. / Journal of Structural Geology 30 (2008) 827–838838
Lisle, R.J., 1997. A fold classification scheme based on a polar plot of inverse layer
thickness. In: Sengupta, S. (Ed.), Evolution of Geological Structures in Micro- to
Macro-scales. Chapman and Hall, pp. 323–339.

Lisle, R.J., Fernández Martı́nez, J.L., Bobillo-Ares, N.C., Menéndez, O., Aller, J.,
Bastida, F., 2006. FOLD PROFILER: A MATLAB�-based program for fold shape
classification. Computers and Geosciences 32, 102–108.

Mukhopadhyay, D., 1965. Effects of compression on concentric folds and
mechanism of similar folding. Journal of the Geological Society of India 6,
27–41.

Ramberg, H., 1964. Selective buckling of composite layers with contrasted rheo-
logical properties. Tectonophysics 1, 307–341.
Ramsay, J.G., 1962. The geometry and mechanics of formation of ‘‘similar’’ type
folds. Journal of Geology 70, 309–327.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. Mc-Graw Hill Book Company,
New York, 568 pp.

Shah, J., Srivastava, D.C., 2006. Strain estimation from flattened parallel folds: ap-
plication of the Wellman method and Mohr circle. Geological Magazine 143,
243–247.

Srivastava, D.C., Lisle, R.J., 2004. Rapid analysis of fold shape using Bézier curves.
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